Something that I have really become passionate about recently is the concept of the Vertical Farm. The idea was coined by Dickson Despommier, a professor of environmental health sciences and microbiology at Columbia University in New York City, who developed the idea of vertical farming in 1999 with graduate students in a medical ecology class.
Despommier had originally challenged his class to feed the population of Manhattan (about 2,000,000 people) using 13 acres (5.3 ha) of usable rooftop gardens. The class calculated that, by using rooftop gardening methods, only 2 percent would be fed. Unsatisfied with the results, Despommier made an off-the-cuff suggestion of growing plants indoors, vertically. The idea sparked the students' interests and gained major momentum. By 2001 the first outline of a vertical farm was introduced and today scientists, architects, and investors worldwide are working together to make the concept of vertical farming a reality. In an interview with Miller-McCune.com, Despommier described how vertical farms would function:
"Each floor will have its own watering and nutrient monitoring systems. There will be sensors for every single plant that tracks how much and what kinds of nutrients the plant has absorbed. You'll even have systems to monitor plant diseases by employing DNA chip technologies that detect the presence of plant pathogens by simply sampling the air and using snippets from various viral and bacterial infections. It's very easy to do. Moreover, a gas chromatograph will tell us when to pick the plant by analyzing which flavenoids the produce contains. These flavenoids are what gives the food the flavors you're so fond of, particularly for more aromatic produce like tomatoes and peppers. These are all right-off-the-shelf technologies. The ability to construct a vertical farm exists now. We don't have to make anything new."
Preparation for the future
It is estimated that by the year 2050, close to 80% of the world’s population will live in urban areas and the total population of the world will increase by 3 billion people. A very large amount of land may be required depending on the change in yield per hectare. Scientists are concerned that this large amount of required farmland will not be available and that severe damage to the earth will be caused by the added farmland. Vertical farms, if designed properly, may eliminate the need to create additional farmland and help create a cleaner environment.
Increased crop production
Unlike traditional farming in non-tropical areas, indoor farming can produce crops year-round. All-season farming multiplies the productivity of the farmed surface by a factor of 4 to 6 depending on the crop. With some crops, such as strawberries, the factor may be as high as 30.
Furthermore, as the crops would be sold in the same infrastructures in which they are grown, they will not need to be transported between production and sale, resulting in less spoilage, infestation, and energy required than conventional farming encounters. Research has shown that 30% of harvested crops are wasted due to spoilage and infestation, though this number is much lower in developed nations. Despommier suggests that, if dwarf versions of certain crops are used (e.g. dwarf wheat developed by NASA, which is smaller in size but richer in nutrients) year-round crops, and "stacker" plant holders are accounted for, a 30-story building with a base of a building block (5 acres) would yield a yearly crop analogous to that of 2,400 acres (970 ha) of traditional farming.
Protection from weather-related problems
Crops grown in traditional outdoor farming suffer from the often suboptimal, and sometimes extreme, nature of geological and meteorological events such as undesirable temperatures or rainfall amounts, monsoons, hailstorms, tornadoes, flooding, wildfires, and severe droughts. The protection of crops from weather is increasingly important as global climate change occurs. “Three recent floods (in 1993, 2007 and 2008) cost the United States billions of dollars in lost crops, with even more devastating losses in topsoil. Changes in rain patterns and temperature could diminish India’s agricultural output by 30 percent by the end of the century.”
Because Vertical Farming provides a controlled environment, the productivity of vertical farms would be mostly independent of weather and protected from extreme weather events. Although the controlled environment of vertical farming negates most of these factors, earthquakes and tornadoes still pose threats to the proposed infrastructure, although this again depends on the location of the vertical farms.
Conservation of resources
Each acre in a vertical farm could allow between 10 and 20 outdoor acres of farmland to return to its natural state, and recover farmlands due to development from original flat farmlands.
Vertical farming would reduce the need for new farmland due to overpopulation, thus saving many natural resources, currently threatened by deforestation or pollution. Deforestation and desertification caused by agricultural encroachment on natural biomes would be avoided. Because vertical farming lets crops be grown closer to consumers, it would substantially reduce the amount of fossil fuels currently used to transport and refrigerate farm produce. Producing food indoors reduces or eliminates conventional plowing, planting, and harvesting by farm machinery, also powered by fossil fuels. Burning less fossil fuel would reduce air pollution and the carbon dioxide emissions that cause climate change, as well as create healthier environments for humans and animals alike.
Organic crops
The controlled growing environment reduces the need for pesticides. Advocates claim that producing organic crops in vertical farms is practical and the most likely production and marketing strategy.
Halting mass extinction
Withdrawing human activity from large areas of the Earth's land surface may be necessary to slow and eventually halt the current mass extinction of land animals.
Traditional agriculture is highly disruptive to wild animal populations that live in and around farmland and some argue it becomes unethical when there is a viable alternative. One study showed that wood mouse populations dropped from 25 per hectare to 5 per hectare after harvest, estimating 10 animals killed per hectare each year with conventional farming. In comparison, vertical farming would cause very little harm to wildlife.
Impact on human health
Traditional farming is a hazardous occupation with particular risks that often take their toll on the health of human laborers. Such risks include: exposure to infectious diseases such as malaria, exposure to toxic chemicals commonly used as pesticides and fungicides, confrontations with dangerous wildlife such as poisonous snakes, and the severe injuries that can occur when using large industrial farming equipment. Whereas the traditional farming environment inevitably contains these risks (particularly in the farming practice known as “slash and burn”), vertical farming – because the environment is strictly controlled and predictable – reduces some of these dangers. Currently, the American food system makes fast, unhealthy food cheap while fresh produce is less available and more expensive, encouraging poor eating habits. These poor eating habits lead to health problems such as obesity, heart disease, and diabetes.
Urban growth
Vertical farming, used in conjunction with other technologies and socioeconomic practices, could allow cities to expand while remaining largely self sufficient food wise. This would allow for large urban centers that could grow without destroying considerably larger areas of forest to provide food for their people. Moreover, the industry of vertical farming will provide employment to these expanding urban centers. This may help displace the unemployment created by the dismantling of traditional farms, as more farm laborers move to cities in search of work. t is highly unlikely that traditional farms will become obsolete, as there are many crops that are not suited for vertical farming, and the production costs are currently extremely lower.
Energy production
Vertical farms could exploit methane digesters to generate a small portion of its own electrical needs. Methane digesters could be built on site to transform the organic waste generated at the farm into biogas which is generally composed of 65% methane along with other gasses. This biogas could then be burned to generate electricity for the greenhouse.
Developers and local governments in the following cities have expressed serious interest in establishing a vertical farm: Incheon, Abu Dhabi, Dongchan, New York City, Portland, Los Angeles, Las Vegas, Seattle, Surrey, Toronto, Paris, Bangalore, Dubai, Shanghai and Beijing. The Illinois Institute of Technology is now crafting a detailed plan for Chicago. It is suggested that prototype versions of vertical farms should be created first, possibly at large universities interested in the research of vertical farms, in order to prevent failures such as the Biosphere 2 project in Oracle, Arizona.In 2010, the Green Zionist Alliance proposed a resolution at the 36th World Zionist Congress calling on the Jewish National Fund to develop vertical farms in Israel.
Source: Wikipedia
No comments:
Post a Comment
Many thanks for your contribution. Where applicable, we will respond to you here.
No comments:
Post a Comment
Many thanks for your contribution. Where applicable, we will respond to you here.